jueves, 17 de noviembre de 2011

Paralelo.

Las matematicas en la India.
Las matemáticas védicas comenzaron en la temprana Edad del Hierro, con el Satapatha-bráhmana (hacia el siglo IX a. C.), donde se aproxima el valor de π con dos decimales. y los Sulba-sutras (hacia el 500 a. C.) que eran textos de geometría que usaban números irracionales, números primos, regla de tres y raíces cúbicas; cálculo de la raíz cuadrada de 2 con cinco decimales; un método para cuadrar el círculo; resolución de ecuaciones lineales y cuadráticas; desarrollo algebraico de ternas pitagóricas y enunciado y demostración numérica del teorema de Pitágoras
Ellos descubrieron los beneficios de la matemática decimal, convirtieron a número cero para que fuera un número para el cálculo y la investigación.
Fueron más lejos con el cálculo con el número 0, llegaron a los números negativos y al 0 porque pensaban en los números como entidades abstractas.
Los matemáticos indios fueron responsables de innovadores descubrimientos fundamentales en el área de la trigonometría, su objetivo central era el estudio del triángulo rectángulo.
Llevaron a cabo una tarea gigantesca que consistía en encontrar un método para calcular la función seno de cualquier ángulo dado, uno de los referentes fue “Marabá”  y su éxito fue el concepto del infinito, descubrieron que se podían sumar muchas cosas infinitamente con efectos significativos .
Se dio cuenta que se podía utilizar el mismo principio de las sumas infinitas para averiguar uno de los números más importantes en las matemáticas   π (pi) (relación entre el perímetro de una circunferencia y su diámetro), otro referente fue “Alcuarismi” el cual creó un nuevo lenguaje matemático “Algebra”, que explica la normas de comportamiento de los números.
Los egipcios
Las matemáticas en el Antiguo Egipto se refieren a las matemáticas escritas en las lenguas egipcias. Desde el periodo helenístico, el griego sustituyó al egipcio como el lenguaje escrito de los escolares egipcios y desde ese momento las matemáticas egipcias se fundieron con las griegas y babilónicas para dar lugar a las matemática helénica. El estudio de las matemáticas en Egipto continuó más tarde bajo el influjo árabe como parte de las matemáticas islámicas, cuando el árabe se convirtió en el lenguaje escrito de los escolares egipcios.
El texto matemático más antiguo descubierto es el
papiro de Moscú, que data del Imperio Medio de Egipto, hacia el 2000-1800 a. C. Como muchos textos antiguos, consiste en lo que hoy se llaman problemas con palabras o problemas con historia, que tienen la intención aparente de entretener. Se considera que uno de los problemas es de particular importancia porque ofrece un método para encontrar el volumen de un tronco: "Si te dicen: Una pirámide truncada [de base cuadrada] de 6 de altura vertical, por 4 en la base [base inferior] y 2 en lo alto [base superior]. Haces el cuadrado de 4 y resulta 16. Doblas 4 y resulta 8. Haces el cuadrado de 2 y resulta 4. Sumas el 16, el 8 y el 4 y resulta 28. Tomas un tercio de 6 y resulta 2. Tomas 28 dos veces y resulta 56. Mira, es 56. Encontrarás lo correcto."Japon.

La matemática que se desarrolla en Japón durante el período Edo (1603 - 1887), es independiente de la matemática occidental; a este período pertenece el matemático Seki Kōwa, de gran influencia por ejemplo, en el desarrollo del wasan (matemática tradicional japonesa), y cuyos descubrimientos (en áreas como el cálculo integral), son casi simultáneos a los matemáticos contemporáneos europeos como Gottfried Leibniz.
La matemática japonesa de este período se inspira de la matemática china, está orientada a problemas esencialmente geométricos. Sobre tablillas de madera llamadas sangaku, son propuestos y resueltos «enigmas geométricos»; de allí proviene, por ejemplo, el teorema del sexteto de Soddy


Mesopotamia.Las matemáticas babilónicas hacen referencia a las matemáticas de la gente de Mesopotamia, el actual Irak, desde los días de los primeros sumerios, hasta el inicio del periodo helenístico. Se llaman matemáticas babilónicas debido al papel central de Babilonia como lugar de estudio, que dejó de existir durante el periodo helenístico. Desde este punto, las matemáticas babilónicas se fundieron con las matemáticas griegas y egipcias para dar lugar a las matemáticas helenísticas. Más tarde, bajo el Imperio árabe, Mesopotamia, especialmente Bagdad, volvió a ser un importante centro de estudio para las matemáticas islámicas.
En contraste con la escasez de fuentes en las matemáticas egipcias, el conocimiento sobre las matemáticas en Babilonia se deriva de más de 400 tablillas de arcilla desveladas desde 1850. Labradas en
escritura cuneiforme, las tablillas fueron grabadas mientras la arcilla estaba húmeda y cocidas posteriormente en un horno o secadas al sol. Algunas de ellas parecen ser tareas graduadas.
Las evidencias más tempranas de matemáticas escritas datan de los antiguos
sumerios, que constituyeron la civilización primigenia en Mesopotamia. Los sumerios desarrollaron un sistema complejo de metrología desde el 3000 a. C. Desde alrededor del 2500 a. C. en adelante, los sumerios escribieron tablas de multiplicar en tablillas de arcilla y trataron ejercicios geométricos y problemas de división. Las señales más tempranas de los numerales babilónicos también datan de ese periodo.
La mayoría de las tablillas de arcilla recuperadas datan del 1800 al 1600 a. C. y abarcan tópicos que incluyen fracciones, álgebra, ecuaciones cuadráticas y cúbicas y el cálculo de
primos gemelos regulares recíprocos. Las tablillas también incluyen tablas de multiplicar y métodos para resolver ecuaciones lineales y ecuaciones cuadráticas. La tablilla babilónica YBC 7289 da una aproximación de √2 con una exactitud de cinco posiciones decimales.
Las matemáticas babilónicas fueron escritas usando un
sistema de numeración sexagesimal (base 60). De ahí se deriva la división de un minuto en 60 segundos y de una hora en 60 minutos, así como la de un círculo en 360 (60 × 6) grados y las subdivisiones sexagesimales de esta unidad de medida de ángulos en minutos y segundos. Los avances babilónicos en matemáticas fueron facilitados por el hecho de que el número 60 tiene muchos divisores. También, a diferencia de los egipcios, griegos y romanos, los babilonios tenían un verdadero sistema de numeración posicional, donde los dígitos escritos a la izquierda representaban valores de orden superior, como en nuestro actual sistema decimal de numeración. Carecían, sin embargo, de un equivalente a la coma decimal y así, el verdadero valor de un símbolo debía deducirse del contexto.

0 comentarios:

Publicar un comentario

Twitter Delicious Facebook Digg Stumbleupon Favorites More